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The Importance of Translational Research in Defining Mechanisms
Underlying Waldenstrom’s Macroglobulinemia Biology

Tumor Clone
Bone Marrow Niche
Tumor Cell-to-Bone Marrow Niche Interaction
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v Lymphoplasmacytic lymphoma (WHO)
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v Lymphoplasmacytic lymphoma (WHO)
v'1-2% of all hematologic neoplasms
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Waldenstrom’s Macroglobulinemia: Overview

v Lymphoplasmacytic lymphoma (WHO)
v'1-2% of all hematologic neoplasms
v'Specific miRNA signature
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Waldenstrom’s Macroglobulinemia: Overview

v Lymphoplasmacytic lymphoma (WHO)
v'1-2% of all hematologic neoplasms
v'Specific miRNA signature - 6q deletion
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Waldenstrom’s Macroglobulinemia: Overview
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NEB M
1"!
15
16
17

L{
G
B \
I..A
9
0
1

mc

NEM
30
mc

88 L5

14
pbm
pt

NI

pt

BCV
18
20
13

b0 eeTe®

v Lymphoplasmacytic lymphoma (WHO)
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v'Specific miRNA signature - 6q deletion
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Waldenstrom’s Macroglobulinemia: Overview

NORMAL CELLS WM PRIMARY CELLS

v Lymphoplasmacytic lymphoma (WHO)
v'1-2% of all hematologic neoplasms
v'Specific miRNA signature - 6q deletion
v Reduced histone acetylation and increased HDAC activity
v’ Constitutive PI3K/Akt and NFkB pathways
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Waldenstrom’s Macroglobulinemia: Focus on Somatic Mutations

v'Recurrent somatic aberrations (90%: MYD88265P; 30%: CXCR4¢1013G)

Genomic scenario
(somatic mutations)




Waldenstrom’s Macroglobulinemia: a Model for Studying
ILymphoplasmacytic Transformation

high prevalence
of MYD88%6°P
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Waldenstrom’s Macroglobulinemia: a Model for Studying
ILymphoplasmacytic Transformation

high prevalence Bone marrow infiltration Existence of the IgM MGUS
of MYD88-26>P of mutated B-lymphocytes premalignant condition
and plasma cells
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Genetic marker Characterization of Observation of clonal evolution
of the disease intratumor diversity preceding full-blown disease status
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WM provides a singular model for investigating lymphoplasmacytic transformation




MYD8825°P: the Only Player?




Is MYD88'%°%P Present in Progenitor and Mature B-cell Sufficient

to Drive WM Transformation?

MYD88L256P
X

Rodriﬁuez Si et al. Sci Advi 2022
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Is MYD88'%°¢P Present in Progenitor and Mature B-cell Sufficient
to Drive WM Transformation?
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Is MYD88'%°¢P Present in Progenitor and Mature B-cell Sufficient
to Drive WM Transformation?
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Is MYD88'%°%P Present in Progenitor and Mature B-cell Sufficient
to Drive WM Transformation?
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Is MYD88'%°%P Present in Progenitor and Mature B-cell Sufficient
to Drive WM Transformation?
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Is MYD88'%°¢P Present in Progenitor and Mature B-cell Sufficient
to Drive WM Transformation?

Mutated MYDS88%°¢P alone is insufficient
to induce WM transformation in mice



Is MYD88'%°¢P Present in Progenitor and Mature B-cell Sufficient
to Drive WM Transformation?
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MYD882%>P mutation could be detected in pre-B
progenitor compartments and involved the
entire mature B-cell clone (100% of pts).
Not detected in any fraction of HD marrow.

Mutated MYD88%°P alone is insufficient
to induce WM transformation
in the human setting

Kaushal et al. Blood Can Disc. 2021




Are Other Molecular Aberrations Required for WM Transformation
in Addition to MYD88'26°P?
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Are Other Molecular Aberrations Required for WM Transformation
in Addition to MYD88'26°P?
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Are Other Molecular Aberrations Required for WM Transformation
in Addition to MYD88'26°P?
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Are Other Molecular Aberrations Required for WM Transformation
in Addition to MYD88'26°P?
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Are Other Molecular Aberrations Required for WM Transformation
in Addition to MYD88'26°P?

Yes: co-occurrence of MYD8829°P and BCL2
overexpression or constitutive BCR signhaling
accelerates LPL/WM development



Waldenstrom’s Macroglobulinemia: a Model for Studying
Lymphoplasmacytic Transformation

MYD88%%>F js detectable in most cases of IgM MGUS

after a median follow-up of 34 years, approximately 84% of individuals
with IgM MGUS do not progress to WM

many patients with MYD88%%>F do not
develop a B cell malignancy

l

N

Progression to WM is driven by both the cellular origin of the MYD88'%¢>P and the
emergence of cooperating genetic alterations

Xu L.e t al. Blood, 2013
Jimenez C, et al. Leukemia, 2013
Kyle RA, et al. NEJM, 2018




CXCR4-Genomic Aberrations: Role in WM Biology

Whole genome sequencing
WM patients

27% harboring aberrations within the
carboxyl terminal domain of CXCR4

CXCR4-related somatic variant in primary WM cells may modulate WM biology
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CXCR4¢1013G, jn Vivo Functional Role in WM
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Functional relevance of CXCR4¢1913G yariant in
WM:
- Oncogenic role
as shown both in vivo and at molecular level

Roccaro et a. Blood, 2014




CXCR419136 Confers Resistance to Ibrutinib Therapy: Pre-Clinical Setting

Transcriptome signature

DRUG RESISTANCE RESPONSE TO DRUGS
enriched in CXCR4 mutated cells enriched in CXCR4 non-mutated cells
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CXCRA4C19136 Confers Resistance to Ibrutinib Therapy: Clinical Setting

Overall Response Rate

MYD8SWT X CR4WT 7 b . E { 71.4 (29.0-96.3)
MY D88-265P CXCR4WT 34 +—@ 100.0 (89.7-100.0)
MY D88-265P CXCR4WHIM 21 l—.%—l 85.7 (63.7-97.0)

| I | | |
0 20 40 60 80 100

Major Response Rate

Mutation :

MYD8SYTCXCR4WT 7 = :5 28.6 (3.7-71.0)
MYDB88 265PCXCR4WT 34 '—@— 91.2 (76.3-98.1)
MYDB88 265PCXCR4WHIM 21 t S ' { 61.9 (38.4-81.9)

T T T T T 1

0 20 40 60 80 100

Treon et al. N Engl J Med, 2015
Response/patients
Subgroup Ibrutinib Zanubrutinib Rate difference, % (95% CI)*

Baseline CXCR4 mutation status by central lab
WHIM 1/8 AR -3.4(-31.9, 25.1)
WT/UNKNOWN 18/91 28/ 11.0 (-1.5, 23.5)

Low proportion of CXCR4WHM mutated cases
Higher VGPR rate in CXCR4WT ys CXCR4WHM

Tam et al. Blood, 2020




Shared vs Unique Somatic Mutations Between Normal and Tumor Cells
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TP53 and Its Prognostic Significance in WM
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How to Better Know and Investigate Potential Aberrations

Going from IgM-MGUS Towards WM

Healthy

t

MGUS

L

WM

T

Marrow

CyTOF

Single-cell mass cytometry

CITE-seq

Single-cell proteomics and
single-cell RNA sequencing

BCR sequencing

Tumor-specific T-cell
immunity

Exome sequencing on sorted
cell populations

Kaushal et al. Blood Can Disc. 2021




CD19* B Cells: Changes Going from HD to MGUS to WM

Healthy WM
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Kaushal et al. Blood Can Disc. 2021



CD19* B Cells: Changes Going from HD to MGUS to WM

CyTOF
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Changes in the B-cells evident as early as MGUS

- increase in CXCR5"¢€ B cells
- decline in naive B cells

CD19* B cells: 10 distinct clusters
- progressive loss of IgD*CD27~ naive B cells
- increase CXCR5"es B cells

Kaushal et al. Blood Can Disc. 2021




CD19* B Cells: Changes Going from HD to MGUS to WM
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CD19* B cell and transcriptome
- existence of distinct clusters
- each patient is transcriptionally distinct
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CD19* B Cells: Changes Going from HD to MGUS to WM
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Take-Home Points - | -

MYD88 mutation represents a pre-neoplastic event
Low frequency of MYD88 in HSCs: hard to think they act as Cancer-SCs

Progression to WM is driven by both the cellular origin of the MYD88-25°P

and the emergence of cooperating genetic alterations
(i.e.:BCL2; BCR; CXCR4¢10136)
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Underlying Waldenstrom’s Macroglobulinemia Biology
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Underlying Waldenstrom’s Macroglobulinemia Biology

Bone Marrow Niche

v’ Bone marrow microenvironment
v' Myeloid compartment
v’ Innate cells
v’ T-cells



How to Better Know and Investigate the Bone Marrow Milieu
Going from IgM-MGUS towards WM?




How to Better Know and Investigate the Bone Marrow Milieu

Going from IgM-MGUS towards WM?

Healthy

t

MGUS

L

WM

T

Marrow

CyTOF

Single-cell mass cytometry

CITE-seq

Single-cell proteomics and
single-cell RNA sequencing

BCR sequencing

Tumor-specific T-cell
immunity

Exome sequencing on sorted
cell populations

Kaushal et al. Blood Can Disc. 2021




Changes in the Bone Marrow Microenvironment
Comparing HDs, IgM MGUS, and WM

Healthy MGUS WM

HD to IgM-MGUS to WM:
- increase in CXCR5NEG B cells in WM
- decline in myeloid cells
- increase in BM-T cells in MGUS

CyTOF

— 1-SNE_2

— I-SNE 1

[ T cells I NK cells
B Naive B cells [l Memory B cells

Bl Myeloid/monocyte
[ CXCR5" B cells
I Other cells
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Changes in the Bone Marrow Microenvironment
Comparing HDs, IgM MGUS, and WM

CyTOF

— 1-SNE_2

_....CITE-seq

Healthy

MGUS

WM

; 39°/o

— I-SNE 1

[ T cells

B Naive B cells [l Memory B cells

Healthy

I NK cells

MGUS

Bl Myeloid/monocyte
[ CXCRS5"eg B cells
Il Other cells

HD to IgM-MGUS to WM:
- increase in CXCR5NEG B cells in WM
- decline in myeloid cells
- increase in BM-T cells in MGUS

Overall:
BM cells in WM and IgM-MGUS
are characterized by alterations
in several hematopoietic lineages vs HD

Kaushal et al. Blood Can Disc. 2021




Changes in the Myeloid Compartment

Healthv LJIGUS ~ CD19-/CD3-depleted cells:
% "% U CD14+/CD11c+ cells
Both IgM-MGUS and WM showed
- decline in classic monocytes (cluster #1)
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Changes in the Myeloid Compartment

~ He

fw&‘ . :

CD19-/CD3-depleted cells:
CD14+/CD11c+ cells
Both IgM-MGUS and WM showed
- decline in classic monocytes (cluster #1)
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-1 6 1 é IL1 processing
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Changes in the Myeloid Compartment

~ Healthy  MGUS

) ~y ~ v
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2.‘ s g X
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CD19-/CD3-depleted cells:
CD14+/CD11c+ cells
Both IgM-MGUS and WM showed

s 48 - decline in classic monocytes (cluster #1)
18%"
oL
S100A8 | CCL3 CCL4 Interferon gamma signaling . o .
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o | N1 ki
. 0 1 2 IL1 processing
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-Logyo P

Together, these data suggest that activation of myeloid inflammation

is an early feature of MGUS, occurring before the evolution of the malignant clone
Kaushal et al. Blood Can Disc. 2021




Changes in Innate Cells

CD3-/CD56+ NK clusters:
- prominent alterations in WM
- greater expression of lytic/exhaustion markers
- loss of IFN-signature

| TNF-o signaling  IFN-signaling _ o
| _ Immune exhaustion and dysfunction in NK
§ Tt o et i‘ cells with evolution of WM
JFRES § e LU
: L:ngoldOChang:e 2 i g .',_t:;.::i.." - i — ..__._::.. -

Increased Expression Increased Expression
in Healthy in Waldenstrom
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Changes in T Cells

— t-SNE_2

WM

Oo g
§ CLL ki
.

MGUS
i T-cell niche:

= CD4Th - decrease in naive CD8 T cells
5 I = CD4 GZM* .
6% ¢ A Sl - increase CD8+/Granzyme+ T cells
: 5,9 = CD8 GZM®

Most prominent transcriptome changes
in CD8+T cells:

*HD *WM ; -
804 _*_ 100 01 e | ;
° i 200 N . .

: IRE! Lk - increased lytic genes and markers
= S o g Wil S x k
o 40 } P ° 3_ ‘I‘ E 50 ] 100 ok ; Ak cots i i S 100 IFIf2 o8 ¢ s . . . .
dalestn 31 2. o e g g associated with T-cell exhaustion in
) 0 : a 5 — HD MGUS WM 0 m;!}“'gﬁﬂima i o i W M / M G U S

TN TEM TCM TERM EFF —; avg(‘iloch; é é -2 = avgi)logFC 1 2

Higherin HD  Higherin MGUS Higherin HD  Higherin WM

- loss of IFN-response genes

Changes in the T-cell compartment begin early in MGUS, before the establishment of
progressive malignant clone, and are characterized by progressive depletion of naive T cells
and enrichment of terminal effector T cells




Take-Home Points - |l -

Increase in extrafollicular B cells
Myeloid inflammation
Alteration in immune function
Treq derequlation

Immune
microenvironment | Several changes

\

Y
Milieu favoring the emergence of the B-cell clone

Acquisition further aberrations (Blc2; CXCR4)

Progressive growth and evolution to the WM stage
mediates tumor-specific recognition of the clone
undergoes immune exhaustion over time

v

WM disease progression

Host immune system
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Tumor Cell-to-Bone Marrow Niche Interaction



WM Cell-to-TREG cell Interaction
Via
CD40-CD40 ligand



Transgenic Murine Lymphoplasmacytic/WM Model
Points Towards a Role of Treg in Supporting WM Biology
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Transgenic Murine Lymphoplasmacytic/WM Model
Points Towards a Role of Treg in Supporting WM Biology
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Primary WM Cells: Impact on Treg-Induction and Treg-Proliferation
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Treg Cells Interact with WM Cells via CD40/CD40-Ligand Axis
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WM Cells Depend on CD4+ Th1 Cells for Survival

via CD40:CD40L From Early Stages
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Take-Home Points - Il -

Halting CD40/CD40-ligand interaction may represent a strategy to inhibit
the Treg-mediated immunosuppressive in WM



Translational Research: Novel Drug Discovery

MOLECULES PEER-REVIED INITIATED PHASE
: PUBLICATION : CLINICAL TRIALS
BMS936564 Roccaro AM, Sacco A, Jimenez C, et al. BMS936564+Len+Dex (MM) |
Anti-CXCR4 MoAb Blood, 2014 (Pending in WM)
CARFILZOMIB Sacco A, Aujay M, Morgan B..., Carfilzomib + Rituximab + I
proteasome Roccaro AM*, Ghobrial IM* Dexamethasone
inhibitor (*Co-last Authors)

Clin Cancer Res, 2012

Carfilzomib + Belinostat |

Carfilzomib 1l
OPROZOMIB Roccaro AM, Sacco A, Aujay M, et al. Oprozomib 1l
(ONX0912) Blood, 2010
proteasome
inhibitor
PANOBINOSTAT Roccaro AM, Sacco A, Jia X, et al. Panobinostat 1l
(LBH589) Blood, 2010
HDAC inhibitor
BORTEZOMIB Roccaro AM, Hideshima T, Raje N, et al. 376 Bortezomib-based clinical trials - MM  11/1lI
proteasome Cancer Res, 2006 31 Bortezomib-based clinical trials - WM
inhibitor



Translational Research: Novel Drug Discovery

MOLECULES PEER-REVIED INITIATED PHASE
: PUBLICATION : CLINICAL TRIALS

OLAPTESED PEGOL Roccaro AM, Sacco A, et al. ola-PEG + Dex + Bortezomib (MM) 1l

Oligonucleotide Cell Reports, 2014

anti-SDF1
ola-PEG + Rituximab + Bendamustine I
(CLL)

EVEROLIMUS Roccaro AM, Sacco A, Jia X, et al Everolims+Bortezomib+/-Rituximab I/l

(RADOO1) Clin Cancer Res 2012

mMTOR inhibitor
Everolimus +/- Bortezomib+Ritux+Dex I/
Everolimus (first line) I
Everolimus + Lenalidomide I/
Everolimus + Panobinostat I/
Everolimus + Bortezomib |
Everolimus + Sorafenib I/l



Overall Summary

Tumor clone
Bone marrow niche
Tumor cell-to-Bone marrow niche interaction
AL

Novel insight into Waldenstrom’s Macroglobulinemia biology

Identification of novel targets for novel therapeutical interventions
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